
 

  
Updated 

2022 

A Guide to Formatting 
with f-strings in Python 
 
 
Jacqueline J. Masloff, PhD 

Thomas M. Connors, MS 
Bentley University 



Formatting with f-strings Page | 1 

Introduction 
The release of Python version 3.6 introduced formatted string literals, simply called “f-strings.” 

They are called f-strings because you need to prefix a string with the letter 'f' to create an f-
string. The letter 'f' also indicates that these strings are used for formatting. Although there are 
other ways for formatting strings, the Zen of Python states that simple is better than complex 
and practicality beats purity--and f-strings are really the most simple and practical way for 
formatting strings. They are also faster any of the previous more commonly used string 
formatting mechanisms. 

To use formatted string literals, begin a string with f or F before the opening quotation mark or 
triple quotation mark in a print() statement. Inside this string, you can write a Python 
expression between {  } characters that can refer to variables or literal values. f-strings use 
the same rules as normal strings, raw strings, and triple quoted strings. The parts of the f-string 
outside of the curly braces are literal strings. f-strings support extensive modifiers that control 
the final appearance of the output string. Expressions in f-strings can be modified by a format 
specification. 

Format specifications are used within replacement fields contained within a format string to 
define how individual values are presented. Each formattable type may define how the format 
specification is to be interpreted. 

This document will explain how to use the many options available with f-strings. 

Alignment 
There are several ways to align variables in f-strings. The various alignment options are as 
follows: 

Option Meaning 

< Forces the expression within the curly braces to be left-aligned. This is the 
default for strings. 

> Forces the expression within the curly braces to be right-aligned. This is the 
default for numbers. 

^ Forces the expression within the curly braces to be centered.  

 

The following is an example using alignment for both a number and a string. The "|" is used in 
the f-string to help delineate the spacing. That number after the ":"will cause that field to be 
that number of characters wide. The first line in the print() statement using f-strings is an 
example of using f-strings for debugging purposes which will be covered later. 

import math 
variable = math.pi 



Formatting with f-strings Page | 2 

 
print(f"Using Numeric {variable = }") 
print(f"|{variable:25}|") 
print(f"|{variable:<25}|") 
print(f"|{variable:>25}|") 
print(f"|{variable:^25}|\n") 
 
variable = "Python 3.9" 
print(f"Using String {variable = }") 
print(f"|{variable:25}|") 
print(f"|{variable:<25}|") 
print(f"|{variable:>25}|") 
print(f"|{variable:^25}|") 

The output of this code snippet is: 

Using Numeric variable = 3.141592653589793 
|        3.141592653589793| 
|3.141592653589793        | 
|        3.141592653589793| 
|    3.141592653589793    | 
 
Using String variable = 'Python 3.9' 
|Python 3.9               | 
|Python 3.9               | 
|               Python 3.9| 
|       Python 3.9        | 

A fill character can also be used in the alignment of f-strings. This is shown in the following 
example: 

import math 
variable = math.pi 
 
print(f"Using String {variable = }") 
print(f"|{variable:=<25}|") 
print(f"|{variable:=>25}|") 
print(f"|{variable:=^25}|\n") 
 
variable = "Python 3.9" 
print(f"Using String {variable = }") 
print(f"|{variable:=<25}|") 
print(f"|{variable:=>25}|") 
print(f"|{variable:=^25}|") 

The output of this code snippet is: 



Formatting with f-strings Page | 3 

Using String variable = 3.141592653589793 
|3.141592653589793========| 
|========3.141592653589793| 
|====3.141592653589793====| 
 
Using String variable = 'Python 3.9' 
|Python 3.9===============| 
|===============Python 3.9| 
|=======Python 3.9========| 

Data Types 
There are many ways to represent strings and numbers when using f-strings. The most common 
ones that you will need for this course are shown below: 

Type Meaning 

s String format—this is the default type for strings  

d Decimal Integer. This uses a comma as the number separator character. 

n Number. This is the same as d except that it uses the current locale setting to 
insert the appropriate number separator characters. 

e Exponent notation. Prints the number in scientific notation using the letter ‘e’ 
to indicate the exponent. The default precision is 6. 

f Fixed-point notation. Displays the number as a fixed-point number. The 
default precision is 6. 

% Percentage. Multiplies the number by 100 and displays in fixed ('f') format, 
followed by a percent sign. 

The following is a basic example of the use of f-strings with numbers: 

import math 
variable = 10 
 
print(f"Using Numeric {variable = }") 
print(f"This prints without formatting {variable}") 
print(f"This prints with formatting {variable:d}") 
print(f"This prints also with formatting {variable:n}") 
print(f"This prints with spacing {variable:10d}\n") 
 
variable = math.pi 
 
print(f"Using Numeric {variable = }") 
print(f"This prints without formatting {variable}") 



Formatting with f-strings Page | 4 

print(f"This prints with formatting {variable:f}") 
print(f"This prints with spacing {variable:20f}") 

The output of this code snippet is the following: 

Using Numeric variable = 10 
This prints without formatting 10 
This prints with formatting 10 
This prints also with formatting 10 
This prints with spacing         10 
 
Using Numeric variable = 3.141592653589793 
This prints without formatting 3.141592653589793 
This prints with formatting 3.141593 
This prints with spacing             3.141593  

The variable, variable, is enclosed in curly braces { }. When variable = 10, the f-string 
understands that variable is an integer and displays it as such. You can also use specify the 
type as n or d and use spacing in the output. When variable = math.pi, the f-string 
understands that variable is a floating-point number and displays it as such. You can also 
use specify the type as f and use spacing in the output. 

The following are examples of the exponent notation and the percentage notation: 

variable = 4 
 
print(f"Using Numeric {variable = }") 
print(f"This prints without formatting {variable}") 
print(f"This prints with percent formatting {variable:%}\n") 
 
variable = 403267890 
print(f"Using Numeric {variable = }") 
print(f"This prints with exponential formatting {variable:e}") 

The output of this code snippet is the following: 

Using Numeric variable = 4 
This prints without formatting 4 
This prints with percent formatting 400.000000% 
 
Using Numeric variable = 403267890 
This prints with exponential formatting 4.032679e+08 

Formatting Floating Point Numbers 
There are several options when formatting floating point numbers.  The number of decimal 
places, the use of the number separator character, and forcing a plus (+) or minus (-) sign can 
also be specified. These are shown in the following example: 



Formatting with f-strings Page | 5 

variable = 1200356.8796 
 
print(f"Using Numeric {variable = }") 
print(f"With two decimal places: {variable:.2f}") 
print(f"With four decimal places: {variable:.3f}") 
print(f"With two decimal places and a comma: {variable:,.2f}") 
print(f"With a forced plus sign: {variable:+.2f}\n") 
 
variable *= -1 
print(f"Using Numeric {variable = }") 
print(f"With two decimal places and a comma: {variable:,.2f}") 

The output of this code snippet is the following: 

Using Numeric variable = 1200356.8796 
With two decimal places: 1200356.88 
With three decimal places: 1200356.880 
With two decimal places and a comma: 1,200,356.88 
With a forced plus sign: +1200356.88 
 
Using Numeric variable = -1200356.8796 
With two decimal places and a comma: -1,200,356.88 

Use of Tabs and Spacing 
Program output is often required to be in tabular form. f-strings are very useful in formatting 
this kind of output. The following lines produce a tidily aligned set of columns with integers and 
their squares and cubes, using spaces to align the columns. Notice the use of the field width to 
ensure that all the numbers are right-aligned: 

print(f'Number   Square       Cube') 
for x in range(1, 11): 
    print(f'{x:2d}       {x*x:3d}          {x*x*x:4d}') 

The output of this code snippet is the following: 

Number   Square       Cube 
 1         1             1 
 2         4             8 
 3         9            27 
 4        16            64 
 5        25           125 
 6        36           216 
 7        49           343 
 8        64           512 
 9        81           729 
10       100          1000 



Formatting with f-strings Page | 6 

The tab character (\t) can also be used in an f-string to line up columns, particularly when 
column headings are used: 

print(f'Number\t\tSquare\t\tCube') 
for x in range(1, 11): 
    print(f'{x:2d}\t\t\t{x*x:3d}\t\t\t{x*x*x:4d}') 

The output of this code snippet is the following and very similar to that of the previous code 
snippet: 

Number  Square  Cube 
 1     1      1 
 2     4      8 
 3     9     27 
 4    16     64 
 5    25    125 
 6    36    216 
 7    49    343 
 8    64    512 
 9    81    729 
10   100   1000 

Using either tabs or spacing is acceptable and may depend on which one you are more 
comfortable with. Either way is acceptable in Python. 

The following takes the previous program and converts x to a float() so that formatting of 
floating-point numbers can be demonstrated: 

print(f'Number\t\tSquare\t\t\tCube') 
for x in range(1, 11): 
    x = float(x) 
    print(f'{x:5.2f}\t\t{x*x:6.2f}\t\t{x*x*x:8.2f}') 

The output of this code snippet is this: 

Number  Square   Cube 
 1.00    1.00      1.00 
 2.00    4.00      8.00 
 3.00    9.00     27.00 
 4.00   16.00     64.00 
 5.00   25.00    125.00 
 6.00   36.00    216.00 
 7.00   49.00    343.00 
 8.00   64.00    512.00 
 9.00   81.00    729.00 
10.00  100.00   1000.00 



Formatting with f-strings Page | 7 

This also demonstrates how the use of a value for width will enable the columns to line up. 

The following program demonstrates the use of strings, decimals, and floats, as well as tabs for 
a type of report that is often produced in a typical Python program. Notice the use of the dollar 
sign ($) just before the variables that are to be displayed as prices. 

APPLES = .50 
BREAD = 1.50 
CHEESE = 2.25 
 
numApples = 3 
numBread = 10 
numCheese = 6 
 
prcApples = numApples * APPLES 
prcBread = numBread* BREAD 
prcCheese = numCheese * CHEESE 
strApples = 'Apples' 
strBread = 'Rye Bread' 
strCheese = 'Cheese' 
total = prcBread + prcCheese + prcApples 
 
print(f'{"My Grocery List":^30s}') 
print(f'{"="*30}') 
print(f'{strApples:10s}{numApples:10d}\t${prcApples:>5.2f}') 
print(f'{strBread:10s}{numBread:10d}\t${prcBread:>5.2f}') 
print(f'{strCheese:10s}{numCheese:10d}\t${prcCheese:>5.2f}') 
print(f'{"Total:":>20s}\t${total:>5.2f}') 

The output of this code snippet is: 

       My Grocery List         
============================== 
Apples             3 $ 1.50 
Rye Bread         10 $15.00 
Cheese             6 $13.50 
              Total: $30.00 

Using f-strings for Debugging 
Updated in version 3.9 of Python is the use of f-strings for debugging purposes. The following 
shows how you can use f-strings to display the value of a variable in the form: variable 
name=variable value 

import math 
goldenRatio = (1+math.sqrt(5))/2 
print(f"{goldenRatio=}") 



Formatting with f-strings Page | 8 

This programming snippet calculates the mathematical and architectural pleasing ratio known 
since the time of Euclid. The f-string, {goldenRatio =}, will display the following: 

goldenRatio=1.618033988749895 

which facilitates the use of basic print() statements for debugging which can get complex and 
quickly show the variable name and its value. Any expression can be used as well as f-string 
format specifiers. 

Spacing can also be preserved around the equal sign so that the following: 

print(f"{goldenRatio = }") 
print(f"{goldenRatio = :.6f}") 
print(f"{(1+math.sqrt(5))/2 = :.6f}")    

will be displayed as: 

goldenRatio = 1.618033988749895 
goldenRatio = 1.618034 
(1+math.sqrt(5))/2 = 1.618034 

Conclusion 
Printing output in Python is facilitated with f-strings as it can be considered What You See is 
What You Get (WYSIWYG). The procedure is as follows: 

• Placing between the quotation marks after the 'f' the text that you want displayed 

• Enclosing the variables to be displayed within the text in curly braces 

• Within those curly braces, placing a colon (:) after the variable 

• Formatting the variable using a format specification (width, alignment, data type) after 
the colon 

Happy formatting! 


	Introduction
	Alignment
	Data Types
	Formatting Floating Point Numbers
	Use of Tabs and Spacing
	Using f-strings for Debugging
	Conclusion
	Happy formatting!

